Exponents Portfolio

Beautiful examples (Your assignment work here! Evidence)	Amazing Narratives	How I feel about my preparedness for:
Exponent Rules	a. Describe how you made sense of the exponent rules. (Pick two artifacts to include) i. Exponents Review ii. Exponent Rules and Practice iii. Evaluating Exponents This is the first exponent document we completed. Luckily, on the front of the document, there were several keys on how to complete most of the problems on the back. It went over the product rule, the quotient rule, the zero exponent rule, the power rule, the expanded power rule, and the negative exponents. These rules went over different ways to simplify the exponent problems we did on the back. This helped us get ready for the following problem sheets we would do later. One of the problems on the sheet was $\frac{6 x^{7}}{2 x^{4}}$, to simplify this, we divide 6 by 2 , which gives us the number 3 . Now we're left with the exponents. Because they share the same variable, and they're a fraction, we subtract them. The end result is $3 x^{\wedge} 3$. ($3 x$ to the power of 3) In the next sheet l'll be discussing, Exponents Review, l'll go over what the Activity 2 on it was. Overall, this was a review on about four different ways to solve for different exponent expressions. In the second activity on the page, you're directed to evaluate and conjecture the following. For example, one of the problems on the page was $\left(2^{\wedge} 2\right)^{\wedge} 3$. Here's the steps:	

 3. $x^{5} \cdot x^{3} x^{8}$ 4. $2 x^{3} \cdot 2 x^{2}$ 5. $\frac{6^{5}}{6^{3}} G^{2}$ 6. $\frac{x^{4}}{x^{7}}$ $-7.8^{0} 1$ 8. $-(9 x)^{0}$ - 9. $\left(y^{4}\right)^{3} \quad y^{12}$ 10. $\left(x^{2} y\right)^{4}$ - 11. $\frac{6 x^{7}}{2 x^{4}} \quad 3 x^{3}$	$2^{\wedge} 2^{*} 2^{\wedge} 2^{*} 2^{\wedge} 2$ $2^{*} 2^{*} 2^{*} 2^{*} 2^{*} 2$ Because it's 2 to the power Now you separate it even of 2, and outside the pore, because of the of 3, you separate it three exponent 2. Now it's going to times, and keep the exponent of two. \quadmultiplying, the result is 64. The habit of a mathematician I used for this was finding patterns. It was crucial to find the repetitive pattern between evaluating the expressions, especially in activity 2.

Activity 1 (Warm-Up) Give the answer to each of the following in product and base (exponent) form \qquad Activity 2 Evaluate the following. Investigate the result. Make a simple conjecture on it The first two are done for you. θ 1. $\left(2^{3}\right)^{2}=2^{3} \cdot 2^{3}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=64$ \qquad 3. $\left(3^{3}\right)^{2}=3^{2} \cdot 3^{2}=3 \cdot 3 \cdot 3 \cdot 3=81$ 4. $\left(2^{2)^{2}}=2^{2} \cdot 2^{2} \cdot 2^{2}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=64\right.$ 5. (L2 $)^{3}=L^{2} \cdot L^{2} \cdot L^{2} \cdot L^{2} \cdot L^{2}=L \cdot C \cdot L \cdot L \cdot L \cdot C \cdot L \cdot L \cdot L^{\prime} \cdot L \cdot=L^{\prime \prime}$ 6. $\left(c^{1 / 2}\right)^{2}=c^{1 / 2} \cdot c^{1 / 2} \cdot c^{1 / 2} \cdot c^{16}=c \cdot c=c^{2}$ a. What do you notice? What patterns can you find? Inoticed that taking it apart con fappoyn redrel solvini i. b. What can you conclude about tam"? What will you do with a, n, al A and II stay, tgether bet yo molipy the ammant then solve for the product.		
Exponential Growth and Decay Models	This was a problem sheet I feel fairly confident about. We filled out the tables, then once we found out once a and b are, we create an equation for the graph next to the problem. For example, the second problem on the page had a table that looks like this:	
	x ${ }^{\text {x }}$	
	0 $1 / 4$	

Forms of Exponential Equations

2. Forms of Exponential Equations (Last Assignment

 on Board)a. Describe how you made sense out of the Forms of Exponential Equation.
This was extremely hard to understand when Mr. Corner started writing more equations on the board next the original ones. To be honest, I got so lost on that part. The problem states,
"A scientist places 7.35 grams of element on the dish. The half-life of the element is 2 days. After d days, the number of grams remaining in the dish is a function of:
$R(d)=7.35(1 / 2)^{\wedge} d / 2$. D representing days, R representing grams left in the dish.
Then in part two, two approximate equivalent expressions are given: $R(d)=7.35(0.250)^{\wedge} d$, and $R(d)=7.35(0.707)^{\wedge} d$. We must place the same number in all the equations to test if the other equations are really equivalent to the first one. For example, if
 we plug in 2 to all of them, it would look like this.
$R(d)=7.35(1 / 2)^{\wedge} d / 2$
$\left.\begin{array}{|l|l|l|}\hline 7.35(1 / 2) 2 / 2 & 7.35^{*} 1 / 2 & 3.674 \\ \text { First, we plug in } \\ \text { the number 2 } \\ \text { where d would be, } \\ \text { and solve for the } \\ \text { exponential part. }\end{array} \quad \begin{array}{l}\text { After solving that, } \\ \text { multiply } 1 / 2 \text { times } \\ \text { the initial amount; } \\ 7.35 .\end{array} \quad \begin{array}{l}\text { This is the end } \\ \text { result }\end{array}\right\}$
$R(d)=7.35(0.250)^{\wedge} d$

$7.35(0.250)^{\wedge} 2$	$7.35^{*} 0.0625$ After solving the exponential part,	0.459 This is our end result.

	everything became more clear. If I used any of the habits of a mathematician, I believe it'd be conjecture and test, because this work was all about testing to see if everything was equivalent.	

